Sequence analysis of TnphoA insertion sites in Vibrio cholerae mutants defective in rugose polysaccharide production.

نویسندگان

  • A Ali
  • Z H Mahmud
  • J G Morris
  • S Sozhamannan
  • J A Johnson
چکیده

Vibrio cholerae can switch from a smooth to a wrinkled or rugose colony phenotype characterized by the secretion of a polysaccharide that enables the bacteria to survive harsh environmental conditions. In order to understand the genetic basis of rugosity, we isolated TnphoA-induced stable, smooth mutants of two O1 El Tor rugose strains and mapped the insertion sites in several of the mutants using a modified Y-adapter PCR technique. One of the TnphoA insertions was mapped to the first gene of the vps region that was previously shown to encode the rugose polysaccharide biosynthesis cluster. Three insertions were mapped to a previously unknown hlyA-like gene, also in the vps region. Five other insertions were found in loci unlinked to the vps region: (i) in the epsD gene (encodes the "secretin" of the extracellular protein secretion apparatus), (ii) in a hydG-like gene (encodes a sigma(54)-dependent transcriptional activator similar to HydG involved in labile hydrogenase production in Escherichia coli, (iii) in a gene encoding malic acid transport protein upstream of a gene similar to yeiE of E. coli (encodes a protein with similarities to LysR-type transcriptional activators), (iv) in dxr (encodes 1-deoxy-D-xylulose 5-phosphate reductoisomerase), and (v) in the intergenic region of lpd and odp (encode enzymes involved in the pyruvate dehydrogenase complex formation). These data suggest the involvement of a complex regulatory network in rugose polysaccharide production and highlight the general utility of the Y-adapter PCR technique described here for rapid mapping of transposon insertion sites.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The rbmBCDEF gene cluster modulates development of rugose colony morphology and biofilm formation in Vibrio cholerae.

Vibrio cholerae, the causative agent of cholera, can undergo phenotypic variation generating rugose and smooth variants. The rugose variant forms corrugated colonies and well-developed biofilms and exhibits increased levels of resistance to several environmental stresses. Many of these phenotypes are mediated in part by increased expression of the vps genes, which are organized into vps-I and v...

متن کامل

Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant.

Reversible phase variation between the rugose and smooth colony variants is predicted to be important for the survival of Vibrio cholerae in natural aquatic habitats. Microarray expression profiling studies of the rugose and smooth variants of the same strain led to the identification of 124 differentially regulated genes. Further expression profiling experiments showed how these genes are regu...

متن کامل

Regulation of Vibrio polysaccharide synthesis and virulence factor production by CdgC, a GGDEF-EAL domain protein, in Vibrio cholerae.

In Vibrio cholerae, the second messenger 3',5'-cyclic diguanylic acid (c-di-GMP) regulates several cellular processes, such as formation of corrugated colony morphology, biofilm formation, motility, and virulence factor production. Both synthesis and degradation of c-di-GMP in the cell are modulated by proteins containing GGDEF and/or EAL domains, which function as a diguanylate cyclase and a p...

متن کامل

Genetic Analysis and Prevalence Studies of the brp Exopolysaccharide Locus of Vibrio vulnificus

Phase variation in the Gram-negative human pathogen Vibrio vulnificus involves three colonial morphotypes- smooth opaque colonies due to production of capsular polysaccharide (CPS), smooth translucent colonies as the result of little or no CPS expression, and rugose colonies due to production of a separate extracellular polysaccharide (EPS), which greatly enhances biofilm formation. Previously,...

متن کامل

The Vibrio cholerae acfB colonization determinant encodes an inner membrane protein that is related to a family of signal-transducing proteins.

Vibrio cholerae accessory colonization factor genes (acfA, B, C, and D) are required for efficient intestinal colonization. Expression of acf genes is under the control of a regulatory cascade that also directs the synthesis of cholera toxin and proteins involved in the biogenesis of the toxin-coregulated pilus. The gene for acfB was cloned by using an acfB::TnphoA fusion junction to probe a V....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Infection and immunity

دوره 68 12  شماره 

صفحات  -

تاریخ انتشار 2000